

ENVIRO HP1600 PART A

Waterproofing Technologies

Version No: 4.4

Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements

Hazard Alert Code: 4

Issue Date: **08/09/2022** Print Date: **08/09/2022** S.GHS.AUS.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier

Product name	ENVIRO HP1600 PART A
Synonyms	Not Available
Other means of identification	ENVIRO HP1600 PART A

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses Polyurethane prepolymer

Details of the manufacturer or supplier of the safety data sheet

Registered company name	Waterproofing Technologies	
Address 295-305 Princes Highway St Peters NSW 2044 Australia		
Telephone +61 2 8595 8699 +61 2 8595 8660		
		Website www.envirosystems.com.au
Email	sales@envirosystems.com.au	

Emergency telephone number

Association / Organisation	Waterproofing Technologies
Emergency telephone numbers	+61 2 8595 8699

SECTION 2 Hazards identification

Classification of the substance or mixture

HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

Poisons Schedule	Not Applicable	
Classification [1]	Serious Eye Damage/Eye Irritation Category 2A, Specific Target Organ Toxicity - Repeated Exposure Category 2, Sensitisation (Respiratory) Category 1A, Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation) Category 3, Skin Corrosion/Irritation Category 2, Sensitisation (Skin) Category 1A, Reproductive Toxicity Category 2, Carcinogenicity Category 2	
Legend:	1. Classification drawn from HCIS; 2. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI	

Label elements

Hazard pictogram(s)

Signal word Dange

Hazard statement(s)

H319 Causes serious eye irritation.	
H373	May cause damage to organs through prolonged or repeated exposure.
H334	May cause allergy or asthma symptoms or breathing difficulties if inhaled.
H335	May cause respiratory irritation.

Version No: 4.4 Page 2 of 14 Issue Date: 08/09/2022 Print Date: 08/09/2022

ENVIRO HP1600 PART A

H315	Causes skin irritation.
H317	May cause an allergic skin reaction.
H361	Suspected of damaging fertility or the unborn child.
H351	Suspected of causing cancer.

Precautionary statement(s) General

P101 If medical advice is needed, have product container or label at hand.	
P102	Keep out of reach of children.
P103	Read carefully and follow all instructions.

Precautionary statement(s) Prevention

P201 Obtain special instructions before use.	
P260 Do not breathe mist/vapours/spray.	
P271	Use only outdoors or in a well-ventilated area.
P280	Wear protective gloves, protective clothing, eye protection and face protection.
P284	[In case of inadequate ventilation] wear respiratory protection.
P264	Wash all exposed external body areas thoroughly after handling.
P272	Contaminated work clothing should not be allowed out of the workplace.

Precautionary statement(s) Response

P304+P340 IF INHALED: Remove person to fresh air and keep comfortable for breathing.	
P308+P313 IF exposed or concerned: Get medical advice/ attention.	
P342+P311 If experiencing respiratory symptoms: Call a POISON CENTER/doctor/physician/first aider.	
P302+P352 IF ON SKIN: Wash with plenty of water.	
P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.	
P312 Call a POISON CENTER/doctor/physician/first aider/if you feel unwell.	
P333+P313 If skin irritation or rash occurs: Get medical advice/attention.	
P337+P313 If eye irritation persists: Get medical advice/attention.	
P362+P364	Take off contaminated clothing and wash it before reuse.

Precautionary statement(s) Storage

P405	Store locked up.
P403+P233	Store in a well-ventilated place. Keep container tightly closed.

Precautionary statement(s) Disposal

Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
101-68-8	30-60	4.4'-diphenylmethane diisocyanate (MDI)
13674-84-5	<10	tris(2-chloroisopropyl)phosphate
Not Available	to 100	Polyurethane prepolymer
Legend: 1. Classification drawn from HCIS; 2. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 3. Classification drawn from C&L EU IOELVs available		

SECTION 4 First aid measures

D

Description of first aid measures		
Eye Contact	If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.	
Skin Contact	If skin or hair contact occurs: Puickly but gently, wipe material off skin with a dry, clean cloth. Immediately remove all contaminated clothing, including footwear. Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre. Transport to hospital, or doctor.	

Version No: 4.4 Page 3 of 14 Issue Date: 08/09/2022 Print Date: 08/09/2022

ENVIRO HP1600 PART A

If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Inhalation Transport to hospital, or doctor, without delay. Following uptake by inhalation, move person to an area free from risk of further exposure. Oxygen or artificial respiration should be administered as needed. Asthmatic-type symptoms may develop and may be immediate or delayed up to several hours. Treatment is essentially symptomatic. A physician should be consulted. ► IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY. For advice, contact a Poisons Information Centre or a doctor. Urgent hospital treatment is likely to be needed. In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition. If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the SDS should be provided. Further action will be the responsibility of the medical specialist. If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the SDS. Ingestion Where medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed ▶ INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.

Indication of any immediate medical attention and special treatment needed

For sub-chronic and chronic exposures to isocvanates:

This material may be a potent pulmonary sensitiser which causes bronchospasm even in patients without prior airway hyperreactivity,

NOTE: Wear a protective glove when inducing vomiting by mechanical means.

- Clinical symptoms of exposure involve mucosal irritation of respiratory and gastrointestinal tracts
- Conjunctival irritation, skin inflammation (erythema, pain vesiculation) and gastrointestinal disturbances occur soon after exposure.
- Pulmonary symptoms include cough, burning, substernal pain and dyspnoea.
- Some cross-sensitivity occurs between different isocyanates.
- Noncardiogenic pulmonary oedema and bronchospasm are the most serious consequences of exposure. Markedly symptomatic patients should receive oxygen, ventilatory support and an intravenous line.
- Treatment for asthma includes inhaled sympathomimetics (epinephrine [adrenalin], terbutaline) and steroids.
- Activated charcoal (1 g/kg) and a cathartic (sorbitol, magnesium citrate) may be useful for ingestion
- Mydriatics, systemic analgesics and topical antibiotics (Sulamyd) may be used for corneal abrasions.
- There is no effective therapy for sensitised workers.

[Ellenhorn and Barceloux; Medical Toxicology]

NOTE: Isocyanates cause airway restriction in naive individuals with the degree of response dependant on the concentration and duration of exposure. They induce smooth muscle contraction which leads to bronchoconstrictive episodes. Acute changes in lung function, such as decreased FEV1, may not represent sensitivity. [Karol & Jin, Frontiers in Molecular Toxicology, pp 56-61, 1992]

Personnel who work with isocyanates, isocyanate prepolymers or polyisocyanates should have a pre-placement medical examination and periodic examinations thereafter, including a pulmonary function test. Anyone with a medical history of chronic respiratory disease, asthmatic or bronchial attacks, indications of allergic responses, recurrent eczema or sensitisation conditions of the skin should not handle or work with isocyanates. Anyone who develops chronic respiratory distress when working with isocyanates should be removed from exposure and examined by a physician. Further exposure must be avoided if a sensitivity to isocyanates or polyisocyanates has developed.

SECTION 5 Firefighting measures

Extinguishing media

- ▶ Foam
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

Special hazards arising from the substrate or mixture

Fire Incompatibility

Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

- Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus Prevent, by any means available, spillage from entering drains or water course. ▶ Use water delivered as a fine spray to control fire and cool adjacent area Fire Fighting
 - Avoid spraying water onto liquid pools.
 - ▶ DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location.
 - If safe to do so, remove containers from path of fire.

Combustible.

- ▶ Slight fire hazard when exposed to heat or flame.
- Heating may cause expansion or decomposition leading to violent rupture of containers.
- On combustion, may emit toxic fumes of carbon monoxide (CO).
- Fire/Explosion Hazard
- May emit acrid smoke ▶ Mists containing combustible materials may be explosive.

Combustion products include:

carbon dioxide (CO2)

hydrogen cyanide isocyanates

Version No: 4.4 Page 4 of 14 Issue Date: 08/09/2022

ENVIRO HP1600 PART A

Print Date: 08/09/2022

and minor amounts of nitrogen oxides (NOx) phosphorus oxides (POx)

other pyrolysis products typical of burning organic material

May emit corrosive fumes

When heated at high temperatures many isocyanates decompose rapidly generating a vapour which pressurises containers, possibly to the point of rupture. Release of toxic and/or flammable isocyanate vapours may then occur

HAZCHEM

Not Applicable

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills

- Clean up all spills immediately
- Avoid breathing vapours and contact with skin and eyes
- ▶ Control personal contact with the substance, by using protective equipment.
- Contain and absorb spill with sand, earth, inert material or vermiculite
- ▶ Wipe up.
- ▶ Place in a suitable, labelled container for waste disposal.

Liquid Isocyanates and high isocyanate vapour concentrations will penetrate seals on self contained breathing apparatus - SCBA should be used inside encapsulating suit where this exposure may occur.

For isocyanate spills of less than 40 litres (2 m2):

- Evacuate area from everybody not dealing with the emergency, keep them upwind and prevent further access, remove ignition sources and, if inside building, ventilate area as well as possible.
- Notify supervision and others as necessary.
- Put on personal protective equipment (suitable respiratory protection, face and eye protection, protective suit, gloves and impermeable boots).
- Control source of leakage (where applicable).
- Dike the spill to prevent spreading and to contain additions of decontaminating solution.
- Prevent the material from entering drains.
- Estimate spill pool volume or area
- Absorb and decontaminate. Completely cover the spill with wet sand, wet earth, vermiculite or other similar absorbent. Add neutraliser (for suitable formulations: see below) to the adsorbent materials (equal to that of estimated spill pool volume). Intensify contact between spill, absorbent and neutraliser by carefully mixing with a rake and allow to react for 15 minutes
- Shovel absorbent/decontaminant solution mixture into a steel drum.
- Decontaminate surface. Pour an equal amount of neutraliser solution over contaminated surface. Scrub area with a stiff bristle brush, using moderate pressure. - Completely cover decontaminant with vermiculite or other similar absorbent. - After 5 minutes, shovel absorbent/decontamination solution mixture into the same steel drum used above.
- Monitor for residual isocyanate. If surface is decontaminated, proceed to next step. If contamination persists, repeat decontaminate procedure immediately above
- Place loosely covered drum (release of carbon dioxide) outside for at least 72 hours. Label waste-containing drum appropriately. Remove waste materials for incineration.
- Decontaminate and remove personal protective equipment.
- Return to normal operation.
- ▶ Conduct accident investigation and consider measures to prevent reoccurrence.

Major Spills

Treat isocyanate spills with sufficient amounts of isocyanate decontaminant preparation ('neutralising fluid'). Isocyanates and polyisocyanates are generally not miscible with water. Liquid surfactants are necessary to allow better dispersion of isocyanate and neutralising fluids/ preparations. Alkaline neutralisers react faster than water/surfactant mixtures alone.

Typically, such a preparation may consist of:

Sawdust: 20 parts by weight Kieselguhr 40 parts by weight plus a mixture of {ammonia (s.g. 0.880) 8% v/v non-ionic surfactant 2% v/v water 90% v/v}.

Let stand for 24 hours

Three commonly used neutralising fluids each exhibit advantages in different situations.

Formulation A

liquid surfactant 0.2-2% sodium carbonate 5-10%

water to 100%

Formulation B

liquid surfactant 0.2-2% concentrated ammonia 3-8%

water to 100%

Formulation C

ethanol, isopropanol or butanol 50% concentrated ammonia 5%

water to 100%

After application of any of these formulae, let stand for 24 hours.

Formulation B reacts faster than Formulation A. However, ammonia-based neutralisers should be used only under well-ventilated conditions to avoid overexposure to ammonia or if members of the emergency team wear suitable respiratory protection. Formulation C is especially suitable for cleaning of equipment from unreacted isocyanate and neutralizing under freezing conditions. Regard has to be taken to the flammability of the alcoholic solution.

Version No: **4.4** Page **5** of **14** Issue Date: **08/09/2022**

ENVIRO HP1600 PART A

Print Date: 08/09/2022

- Avoid contamination with water, alkalies and detergent solutions.
- Material reacts with water and generates gas, pressurises containers with even drum rupture resulting.
- ▶ **DO NOT** reseal container if contamination is suspected.
- Open all containers with care.

Moderate hazard.

- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- No smoking, naked lights or ignition sources.
- Increase ventilation.
- Stop leak if safe to do so.
- Contain spill with sand, earth or vermiculite.
- Collect recoverable product into labelled containers for recycling.
- Absorb remaining product with sand, earth or vermiculite.
- ► Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Safe handling

Precautions for safe handling

Product is moisture sensitive; handle under a dry, inert gas.

Nitrogen with less than 5 ppm each of moisture and oxygen is recommended

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- ▶ Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- ▶ DO NOT enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials.
- ► When handling, **DO NOT** eat, drink or smoke.
- ► Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.

Consider storage under inert gas.

for commercial quantities of isocyanates:

- · Isocyanates should be stored in adequately bunded areas. Nothing else should be kept within the same bunding. Pre-polymers need not be segregated. Drums of isocyanates should be stored under cover, out of direct sunlight, protected from rain, protected from physical damage and well away from moisture, acids and alkalis.
- · Where isocyanates are stored at elevated temperatures to prevent solidifying, adequate controls should be installed to prevent the high temperatures and precautions against fire should be taken.
- · Where stored in tanks, the more reactive isocyanates should be blanketed with a non-reactive gas such as nitrogen and equipped with absorptive type breather valve (to prevent vapour emissions).
- · Transfer systems for isocyanates in bulk storage should be fully enclosed and use pump or vacuum systems. Warning signs, in appropriate languages, should be posted where necessary.

Other information

- Areas in which polyurethane foam products are stored should be supplied with good general ventilation. Residual amounts of unreacted isocyanate may be present in the finished foam, resulting in hazardous atmospheric concentrations.
 Ideal storage temperature range is dependent on the specific polymer due to viscosity and melting point differences between the polymers. Use 25 dep. C. (77, dep. E) to 30 dep. C. (88 dep. E) as a quideling to most liquid isocyanates for optimum storage temperature. If some isocyanates are
- Ideal storage temperature range is dependent on the specific polymer due to viscosity and meiting point differences between the polymers. Using 25 deg C (77 deg F) to 30 deg C (86 deg F) as a guideline to most liquid isocyanates for optimum storage temperature. If some isocyanates are stored at or below a temperature of 25 deg C (77 deg F), crystallization and settling of the isocyanate may occur. Storage in a cold warehouse can cause crystals to form. These crystals can settle to the bottom of the container. If crystals do form, they can be melted easily with moderate heat. It is suggested that a container the size of a drum be warmed for 16-24 hours at sufficient temperature to melt the crystals. When the crystals are melted, the container should be agitated by rolling or stirring, until the contents are homogenous. Since heated isocyanate will generate vapors more rapidly than product stored at 25 deg C (77 deg F), be sure to follow the precautions under the Personal Protection.
- Store in original containers.
- Keep containers securely sealed.
- No smoking, naked lights or ignition sources.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- ▶ Protect containers against physical damage and check regularly for leaks.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container

- ► Metal can or drum
- Packaging as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.

Storage incompatibility

· Avoid reaction with water, alcohols and detergent solutions. Isocyanates are electrophiles, and as such they are reactive toward a variety of nucleophiles including alcohols, amines, and even water. Upon treatment with an alcohol, an isocyanate forms a urethane linkage. If a di-isocyanate is treated with a compound containing two or more hydroxyl groups, such as a diol or a polyol, polymer chains are formed, which are known as polyurethanes. Reaction between a di-isocyanate and a compound containing two or more amine groups, produces long polymer chains known as polyureas.

· Isocyanates and thioisocyanates are incompatible with many classes of compounds, reacting exothermically to release toxic gases. Reactions with amines, strong bases, aldehydes, alcohols, alkali metals, ketones, mercaptans, strong oxidisers, hydrides, phenols, and peroxides can cause vigorous releases of heat. Acids and bases initiate polymerisation reactions in these materials.

Version No: **4.4** Page **6** of **14** Issue Date: **08/09/2022**

ENVIRO HP1600 PART A

Print Date: 08/09/2022

- · Isocyanates also can react with themselves. Aliphatic di-isocyanates can form trimers, which are structurally related to cyanuric acid. Isocyanates participate in Diels-Alder reactions, functioning as dienophiles
- · Isocyanates easily form adducts with carbodiimides, isothiocyanates, ketenes, or with substrates containing activated CC or CN bonds.
- · Some isocyanates react with water to form amines and liberate carbon dioxide. This reaction may also generate large volumes of foam and heat. Foaming spaces may produce pressure in confined spaces or containers. Gas generation may pressurise drums to the point of rupture.
- · Do NOT reseal container if contamination is expected
- · Open all containers with care
- · Base-catalysed reactions of isocyanates with alcohols should be carried out in inert solvents. Such reactions in the absence of solvents often occur with explosive violence,
- · Isocyanates will attack and embrittle some plastics and rubbers.
- The isocyanate anion is a pseudohalide (syn pseudohalogen) whose chemistry, resembling that of the true halogens, allows it to substitute for halogens in several classes of chemical compounds.. The behavior and chemical properties of the several pseudohalides are identical to that of the true halide ions.
 - A range of exothermic decomposition energies for isocyanates is given as 20-30 kJ/mol.
- The relationship between energy of decomposition and processing hazards has been the subject of discussion; it is suggested that values of energy released per unit of mass, rather than on a molar basis (J/g) be used in the assessment.
- For example, in 'open vessel processes' (with man-hole size openings, in an industrial setting), substances with exothermic decomposition energies below 500 J/g are unlikely to present a danger, whilst those in 'closed vessel processes' (opening is a safety valve or bursting disk) present some danger where the decomposition energy exceeds 150 J/g.

BRETHERICK: Handbook of Reactive Chemical Hazards, 4th Edition

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	4,4'-diphenylmethane diisocyanate (MDI)	Methylene bisphenyl isocyanate (MDI)	0.02 mg/m3	0.07 mg/m3	Not Available	Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
4,4'-diphenylmethane diisocyanate (MDI)	0.45 mg/m3	Not Available	Not Available
4,4'-diphenylmethane diisocyanate (MDI)	29 mg/m3	40 mg/m3	240 mg/m3

Ingredient	Original IDLH	Revised IDLH
4,4'-diphenylmethane diisocyanate (MDI)	75 mg/m3	Not Available
tris(2-chloroisopropyl)phosphate	Not Available	Not Available

Occupational Exposure Banding

Appropriate engineering

controls

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit
tris(2-chloroisopropyl)phosphate	E	≤ 0.1 ppm
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.	

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard 'physically' away from the worker and ventilation that strategically 'adds' and 'removes' air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

- Spraying of material or material in admixture with other components must be carried out in conditions conforming to local state regulations (AS/NZS 4114, UNI EN 12215:2010, ANSI/AIHA Z9.3–2007 or national equivalent).
- Local exhaust ventilation with full face positive-pressure air supplied breathing apparatus (hood or helmet type) is required.
- Spraying should be performed in a spray booth fitted with an effective exhaust system which complies with local environmental legislation.
- The spray booth area must be isolated from unprotected personnel whilst spraying is in progress and until all spraying mist has cleared.

NOTE: Isocyanate vapours will not be adequately absorbed by organic vapour respirators. Air contaminants generated in the workplace possess varying 'escape' velocities which, in turn, determine the 'capture velocities' of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active	1-2.5 m/s (200-500
generation into zone of rapid air motion)	f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use

Version No: **4.4** Page **7** of **14** Issue Date: **08/09/2022**

ENVIRO HP1600 PART A

ENVIRO HE 1000 PART A

4: Large hood or large air mass in motion 4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min.) for extraction of solvents generated by spraying at a point 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

Eye and face protection

Safety glasses with side shields.

Chemical goggles.

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- · frequency and duration of contact,
- · chemical resistance of glove material,
- · glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- · Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- Hands/feet protection
- · Excellent when breakthrough time > 480 min
- \cdot Good when breakthrough time > 20 min
- · Fair when breakthrough time < 20 min
- · Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- Isocyanate resistant materials include Teflon, Viton, nitrile rubber and some PVA gloves
- ▶ Protective gloves and overalls should be worn as specified in the appropriate national standard.
- Contaminated garments should be removed promptly and should not be re-used until they have been decontaminated.
- ▶ NOTE: Natural rubber, neoprene, PVC can be affected by isocyanates

Body protection

See Other protection below

Other protection

- Overalls.P.V.C apron.
- Barrier cream.
- Skin cleansing cream.Eye wash unit.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

Forsberg Clothing Performance Index'.

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

ENVIRO HP1600 PART A

Material	CPI

Respiratory protection

Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the 'Exposure Standard' (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Half-Face Full-Face Powered Ai	r
---	---

Print Date: 08/09/2022

Version No: **4.4** Page **8** of **14** Issue Date: **08/09/2022**

ENVIRO HP1600 PART A Print Date: 08/09/2022

PE/EVAL/PE		

- * CPI Chemwatch Performance Index
- A: Best Selection
- B: Satisfactory: may degrade after 4 hours continuous immersion
- C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

A

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as 'feel' or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Protection Factor	Respirator	Respirator	Respirator
up to 10 x ES	A-AUS P2	-	A-PAPR-AUS / Class 1 P2
up to 50 x ES	-	A-AUS / Class 1 P2	-
up to 100 x ES	-	A-2 P2	A-PAPR-2 P2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 deqC)

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used
- In certain circumstances, personal protection of the individual employee is necessary. Personal protective devices should be regarded as being supplementary to substitution and engineering control and should not be used in preference to them as they do nothing to eliminate the hazard.
- However, in some situations, minimising exposure to isocyanates by enclosure and ventilation is not possible, and occupational exposure standards may be exceeded, particularly during on-site mixing of paints, spray-painting, foaming and maintenance of machine and ventilation systems. In these situations, air-line respirators or self-contained breathing apparatus complying with the appropriate nationals standard must be used.
- Organic vapour respirators with particulate pre- filters and powered, air-purifying respirators are NOT suitable.
- Personal protective equipment must be appropriately selected, individually fitted and workers trained in their correct use and maintenance. Personal protective equipment must be regularly checked and maintained to ensure that the worker is being protected
- Air- line respirators or self-contained breathing apparatus complying with the appropriate national standard should be used during the clean-up of spills and the repair or clean-up of contaminated equipment and similar situations which cause emergency exposures to hazardous atmospheric concentrations of isocyanate.

SECTION 9 Physical and chemical properties

Information on basic physical	and chemical properties		
Appearance	Moisture sensitive. Clear, pale yellow liquid		
Physical state	Liquid	Relative density (Water = 1)	Not Available
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Available	Decomposition temperature (°C)	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Available
Flash point (°C)	Not Available	Taste	Not Available
Evaporation rate	Not Available BuAC = 1	Explosive properties	Not Available
Flammability	Not Available	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Reacts	pH as a solution (Not Available%)	Not Available

Version No: 4.4 Page 9 of 14 Issue Date: 08/09/2022

ENVIRO HP1600 PART A

Print Date: 08/09/2022

VOC g/L Vapour density (Air = 1) Not Available Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. Presence of elevated temperatures.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

rmation on toxicological effects

Information on toxicological ef	ffects
Inhaled	The material is not thought to produce respiratory irritation (as classified by EC Directives using animal models). Nevertheless inhalation of vapours, furnes or aerosols, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress. There is strong evidence to suggest that this material can cause, if inhaled once, serious, irreversible damage of organs. Inhalation of aerosols (mists, furnes), generated by the material during the course of normal handling, may be harmful. There is strong evidence to suggest that this material, on a single contact with skin, can cause serious, irreversible damage of organs.
Ingestion	Strong evidence exists that exposure to the material may cause irreversible damage (other than cancer, mutations and birth defects) following a single exposure by swallowing. The material has NOT been classified by EC Directives or other classification systems as 'harmful by ingestion'. This is because of the lack of corroborating animal or human evidence. Accidental ingestion of the material may be seriously damaging to the health of the individual; animal experiments indicate that ingestion of less than 40 gram may be fatal.
Skin Contact	There is strong evidence to suggest that this material, on a single contact with skin, can cause serious, irreversible damage of organs. The material is not thought to produce adverse health effects or skin irritation following contact (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. Skin contact with the material may damage the health of the individual; systemic effects may result following absorption.
Еуе	This material may produce eye irritation in some persons and produce eye damage 24 hours or more after instillation. Moderate inflammation may be expected with redness; conjunctivitis may occur with prolonged exposure.

Ample evidence from experiments exists that there is a suspicion this material directly reduces fertility.

Based on experience with animal studies, exposure to the material may result in toxic effects to the development of the foetus, at levels which do not cause significant toxic effects to the mother.

Persons with a history of asthma or other respiratory problems or are known to be sensitised, should not be engaged in any work involving the handling of isocyanates.

The chemistry of reaction of isocyanates, as evidenced by MDI, in biological milieu is such that in the event of a true exposure of small MDI doses to the mouth, reactions will commence at once with biological macromolecules in the buccal region and will continue along the digestive tract prior to reaching the stomach. Reaction products will be a variety of polyureas and macromolecular conjugates with for example mucus, proteins and cell components.

This is corroborated by the results from an MDI inhalation study. Following an inhalation exposure of rats to radiolabelled MDI, 79% of the dose was excreted in faeces. The faecal excretion in these animals was considered entirely due to ingestion of radioactivity from grooming and ingestion of deposited material from the nasopharangeal region via the mucociliary escalator, i.e. not following systemic absorption. The faecal radioactivity was tentatively identified as mixed molecular weight polyureas derived from MDI. Diamine was not present. Thus, for MDI and diisocyanates in general the oral gavage dosing route is inappropriate for toxicological studies and risk assessment.

It is expected that oral gavage dosing will result in a similar outcome to that produced by TDI or MDI, that is (1) reaction with stomach contents and (2) polymerization to solid polyureas.

Chronic

- Pacaction with stomach contents is very plausibly described in case reports of accidental ingestion of polymeric MDI based glue in domestic animals. Extensive polymerization and CO2 liberation resulting in an expansion of the gastric content is described in the stomach, without apparent acute chemical toxicity
- Polyurea formation in organic and aqueous phases has been described. In this generally accepted chemistry of hydrolysis of an isocyanate the initially produced carbamate decarboxylates to an amine which. The amine, as a reactive intermediate, then reacts very readily with the present isocyanate to produce a solid and inert polyurea. This urea formation acts as a pH buffer in the stomach, thus promoting transformation of the diisocyanate into polyurea, even under the acidic conditions.

At the resorbtive tissues in the small intestine, these high molecular reaction products are likely to be of very low bioavailability, which is substantiated by the absence of systemic toxicity in acute oral bioassays with rats at the OECD limit dose (LC50>2 g/kg bw). The respiratory tract may be regarded as the main entry for systemically available isocyanates as evidenced following MDI.exposures. A detailed summary on urinary, plasma and in vitro metabolite studies is provided below. Taken together, all available studies provide convincing

evidence that MDI-protein adduct and MDI-metabolite formation proceeds:

- ▶ via formation of a labile isocyanate glutathione (GSH)-adduct,
- then transfer to a more stable adduct with larger proteins, and
- without formation of free MDA. MDA reported as a metabolite is actually formed by analytical workup procedures (strong acid or base hydrolysis) and is not an identified metabolite in urine or blood

There has been concern that this material can cause cancer or mutations, but there is not enough data to make an assessment.

Version No: **4.4** Page **10** of **14** Issue Date: **08/09/2022** Print Date: **08/09/2022**

ENVIRO HP1600 PART A

ENVIRO HP1600 PART A	TOXICITY		IRRITATION	
ENVIRO HE 1600 PART A	Not Available		Not Available	
	TOXICITY	IRRITATION		
	Dermal (rabbit) LD50: >6200 mg/kg ^[2]	Dermal Sensitiser *		
4,4'-diphenylmethane diisocyanate (MDI)	Inhalation(Rat) LC50; 0.368 mg/L4h ^[1]	Eye: no adverse effect observed (not irritating) ^[1]		
anocoyanato (mzi)	Oral (Rat) LD50; >2000 mg/kg ^[1]	Skin (rabbit): 500 mg /24 hours		
		Skin: adverse effect observed (irritating) ^[1]		
	TOXICITY		IRRITATION	
tris(2- chloroisopropyl)phosphate	Dermal (rabbit) LD50: >2000 mg/kg ^[1]		Eye (rabbit): non-irritating*	
	Inhalation(Rat) LC50; >4.6 mg/l4h ^[2]		Skin (rabbit): mild (24 h):	
	Oral (Rat) LD50; >500 mg/kg ^[1]			

Inhalation (human) TCLo: 0.13 ppm/30 mins Eye (rabbit): 0.10 mg moderate

specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

The following information refers to contact allergens as a group and may not be specific to this product.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested

4,4'-DIPHENYLMETHANE DIISOCYANATE (MDI)

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production. Allergic reactions involving the respiratory tract are usually due to interactions between IgE antibodies and allergens and occur rapidly. Allergic potential of the allergen and period of exposure often determine the severity of symptoms. Some people may be genetically more prone than others, and exposure to other irritants may aggravate symptoms. Allergy causing activity is due to interactions with proteins. Attention should be paid to atopic diathesis, characterised by increased susceptibility to nasal inflammation, asthma and eczema. Exogenous allergic alveolitis is induced essentially by allergen specific immune-complexes of the IgG type; cell-mediated reactions (T lymphocytes) may be involved. Such allergy is of the delayed type with onset up to four hours following exposure. Isocyanate vapours are irritating to the airways and can cause their inflammation, with wheezing, gasping, severe distress, even loss of consciousness and fluid in the lungs. Nervous system symptoms that may occur include headache, sleep disturbance, euphoria, inco-ordination, anxiety, depression and paranoia.

The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

Aromatic and aliphatic diisocyanates may cause airway toxicity and skin sensitization. Monomers and prepolymers exhibit similar respiratory effect. Of the several members of diisocyanates tested on experimental animals by inhalation and oral exposure, some caused cancer while others produced a harmless outcome. This group of compounds has therefore been classified as cancer-causing.

The substance is classified by IARC as Group 3:

NOT classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing.

Non-chlorinated triphosphates have varying chemical, physical, toxicological and environmental properties. Blooming has been identified as a source of potential exposure (human and environmental) to triphosphate plasticisers / flame retardants. Blooming is the movement of an ingredient in rubber or plastic to the outer surface after curing. Blooming is quickened by increased temperature, and triphosphates are known to bloom from car interior plastics, TVs and computer monitors.

These substances are absorbed to various organs, particularly the liver and kidney but also the brain. Excretion is rapid and mainly in the urine. Animal testing shows that they have low to moderate acute toxicity, and do not significantly irritate the skin and eye. TCEP has caused convulsions, brain lesions and impaired performance in animal testing. These substances have not been found to cause developmental toxicity or birth defects, but may reduce fertility. Data suggests that they do not cause mutations.

Animal testing suggests that these substances, in particular TCEP, TDCPP and TDCiPP, can all cause tumours in various organs, including cancers. At high doses, they may also cause immunotoxicity.

TRIS(2-CHLOROISOPROPYL)PHOSPHATE

For tris(2-chloro-1-methylethyl)phosphate (TCPP)

The flame retardant product supplied in the EU, marketed as TCPP, is actually a reaction mixture containing four isomers. The individual isomers in this reaction mixture are not separated or marketed. The individual components are never produced as such. These data are true for TCPP produced by all EU manufacturers. The other isomers in the mixture include bis(1-chloro-2-propyl)-2-chloropropyl phosphate (CAS 76025-08-6); bis(2-chloropropyl)-1-chloro-2-propyl phosphate (CAS 76649-15-5) and tris(2-chloropropyl) phosphate (CAS 6145-73-9). The assumption is made that all isomers have identical properties in respect of risk assessment. The assumption is justified in part by the fact that they exhibit very similar chromatographic properties, even under conditions optimised to separate them. Predicted physicochemical properties differ to only a small extent.

Chlorinated alkyl phosphate esters (particularly TCPP) were identified as possible substitutes for the fire retardant pentabromodiphenyl ether They appear to be relatively persistent substances, and there is some human health concern. Three substances in this group have been characterised to a degree and serve as a read across reference for TCPP. They include tris(2-chloroethyl)phosphate (TCEP, CAS 115-96-8), tris[2-(chloro-1-chloromethyl)ethyl]phosphate (TDCP, CAS 13674-87-8) and 2,2-bis(chloromethyl)trimethylene bis[bis(2-chloroethyl)phosphate] (V6, CAS 38051-10-4). Other flame retardants in this family, which do not appear as EU HPV (High Production

 Version No: 4.4
 Page 11 of 14
 Issue Date: 08/09/2022

 Print Date: 08/09/2022
 Print Date: 08/09/2022

ENVIRO HP1600 PART A

Volume) substances, include tetrakis[2-(chloroethyl)ethylene)diphosphate (CAS 33125-86-9), tris (2,3-dichloro-1-propyl)phosphate (CAS 78-43-3 an isomer of TDCP))

Acute toxicity: The inhalation exposure studies in animals were somewhat equivocal and in general lacking in detailed information. One study yielded an LC50 of > 7 mg/L/4h. A limit test yielded an acute LC50 value of >4.6 mg/L/4h. No deaths occurred at this concentration. Toxic signs observed in this study, and in 2 further poorly reported studies, included mild lethargy, matted fur, acute bodyweight depression and convulsions. From the studies, it appears that TCPP is more toxic when administered whole body as aerosol than by nose-only exposure. This suggests that some of the systemic toxicity observed when TCPP is administered whole body may result from dermal or oral uptake, rather than inhalation. Therefore, it is concluded that TCPP is of low toxicity via the inhalation route.

Studies in rats indicated that TCPP is of moderate toxicity via the oral route of exposure, with LD50 values from the better quality studies ranging from 632 mg/kg up to 4200 mg/kg, with the majority of values determined to be <2000 mg/kg. Common clinical and macroscopic signs of toxicity observed on nearly all studies included depression, ataxia, hunched posture, lethargy, laboured respiration, increased salivation, partially closed eyelids, body tremors, pilo-erection, ptosis, haemorrhagic lungs and dark liver and/or kidneys. A NOAEL of 200 mg/kg can be identified for acute oral toxicity. This is taken from a 1996 study, in which no clinical signs of toxicity were observed in animals dosed with 200 mg/kg TCPP. Based on the results of the acute oral studies, TCPP should be classified with R22, harmful if swallowed. In a delayed neurotoxicity study conducted in hens, TCPP showed moderate toxicity. The principle effects were reduced mean body weight and food consumption, feather loss and cessation of laying. There was no evidence of inhibited plasma acetylcholinesterase or brain neurotoxic esterase enzyme levels. Therefore, there is no concern for acute delayed neurotoxicity for TCPP.

Studies in rats and rabbits indicated that TCPP is of low toxicity via the dermal route of exposure with LD50 values of >2000mg/kg. There is an extensive database in animals, indicating that TCPP is non-irritant in the rabbit eye and skin. The lack of any substantial skin or eye irritation and the lack of irritation observed in the acute inhalation studies suggest that TCPP would be unlikely to produce significant respiratory tract irritation.

Evidence from a guinea pig study as well as from a local lymph node assay, indicates that TCPP does not possess significant skin sensitisation potential. No information is available on the respiratory sensitisation potential of TCPP.

Repeat dose toxicity: A study is available in which male and female rats were fed diets containing TCPP for 13 weeks at concentrations corresponding to mean substance intake values of up to 1349 mg/kg/day and 1745 mg/kg/day for males and females respectively. This study indicated the liver and thyroid to be the main target organs affected by TCPP. Effects observed included statistically significant increases in absolute and relative liver weights in males at all doses and females at the two highest doses, periportal hepatocyte swelling in high dose groups and mild thyroid follicular cell hyperplasia in males at all doses and females at the highest dose. Based on the increase in both absolute and relative liver weights, accompanied by mild thyroid follicular cell hyperplasia observed in males of all dose groups, a LOAEL of 52 mg/kg/day is derived and taken forward to risk characterisation. This LOAEL is taken forward in preference to the NOAEL which was identified in a 4-week study in which rats were dosed with TCPP at concentrations of 0, 10, 100 and 1000 mg/kg/day, as it was derived from a study of longer duration. The 4-week study also showed the liver as the target organ, with increased liver weight changes observed in the high dose groups, accompanied by hepatocyte hypertrophy in all high-dose males and one mid-dose male and changes in ALAT activity in high-dose animals.

A two-week study in which rats were fed diets of TCPP at concentrations corresponding to mean substance intake values of up to 1636 mg/kg/day for males and 1517 mg/kg/day for females showed no major clinical signs of toxicity. There was a significant reduction in weight gain and food consumption in high dose males during week 2, but there were no other significant findings.

In a 2-generation reproductive toxicity study in which rats were fed TCPP in the diet over two successive generations, the low-dose of 99 mg/kg for females is considered to be the LOAEL for parental toxicity. This is based on decreased body weight and food consumption seen in mid and high dose parental animals and the effects on uterus weight seen in all dosed animals. For males, a NOAEL of approximately 85 mg/kg is derived for parental toxicity, based on decreased body weights, food consumption and organ weight changes observed at mid and high dose groups.

No data are available on inhalation and dermal repeated dose toxicity.

Genotoxicity: The mutagenic potential of TCPP has been well investigated *in vitro*. Evidence from several bacterial mutagenicity studies shows that TCPP is not a bacterial cell mutagen. TCPP was also shown to be non-mutagenic in fungi. In mammalian cell studies, TCPP did not induce forward mutations at the TK locus in L5178Y mouse lymphoma cells in one study, but in a second study, the result was considered equivocal (in the presence of rat liver S9 fraction). A confirmatory mouse lymphoma was conducted in accordance with the relevant regulatory guidelines. The results of the assay indicate that TCPP shows clastogenic activity *in vitro* in the presence of metabolic activation

The main concern for TCPP is clastogenicity, owing to the clearly positive *in vitro* mouse lymphoma study. *In vivo*, TCPP was not clastogenic in a mouse bone marrow micronucleus test. TCPP did not induce an increase in chromosomal aberrations in a rat bone marrow cytogenetics assay. In order to further investigate the potential for TCPP to induce DNA damage, an *in vivo* Comet assay in the rat liver was conducted. The liver was chosen for comet analysis as TCPP caused an increased mutation frequency in the mouse lymphoma assay in the presence of S9 and also induced liver enlargement in repeat dose studies. Under the conditions of this study, TCPP did not induce DNA damage in the liver of rats treated with either 750 or 1500 mg/kg TCPP.

Overall, it is considered that TCPP is not genotoxic *in vivo*.

Carcinogenicity: TCPP is structurally similar to two other chlorinated alkyl phosphate esters, TDCP (tris [2-chloro-1-(chloromethyl)ethyl] phosphate) and TCEP (tris (2-chloroethyl) phosphate). TDCP and TCEP are non-genotoxic carcinogens, in vivo, and have agreed classifications of Carc Cat 3 R40. Based on the available repeat dose toxicity data for TCPP, supported by a qualitative read-across from TDCP and TCEP, there is a potential concern for carcinogenicity for TCPP by a nongenotoxic mechanism. No quantitative read-across can be performed since there are no insights into an underlying mode of action for TCEP and TDCP which would make a prediction on a relatively potency of TCPP possible. Therefore, as a reasonable worst case approach, a risk characterisation will be carried out for this

It is proposed that the effects observed in the 90-day study for TCPP are taken as a starting point for risk characterisation. If these effects were to progress to cancer, they would do so by a non-genotoxic mechanism. Therefore, it is proposed that the LOAEL of 52 mg/kg/day, identified from the 90-day study with TCPP, should be used as a basis for risk characterisation of the carcinogenicity endpoint.

Reproductive toxicity: In a two-generation reproductive toxicity study with TCPP, there were no treatment related effects in pre-coital time, mating index, female fecundity index, male and female fertility index, duration of gestation and post-implantation loss. There was no effect on sperm parameters at necropsy. In females, the length of the longest oestrus cycle and the mean number of cycles per animal were statistically significantly increased in high dose animals of both generations. A decrease in uterus weight was observed in all dosed females in F0 and in high dose females in F1. Effects were also noted on pituitary weights, significant in high dose females of both generations. A LOAEL of 99 mg/kg is derived for effects on fertility. This is based on effects on the effect on uterus weight seen in all dosed females in F0 and high dose females in F1.

Developmental toxicity: From the same study, a LOAEL of 99 mg/kg is derived for developmental toxicity. This is based on a treatment related effect on the number of runts observed in all TCPP-treated groups of the F0 generation.

In a separate study, no treatment-related effects on foetal mortality, implantation number,

resorption or foetal weight were observed following treatment of pregnant dams with TCPP. Cervical ribs and missing 13th ribs were noted at a low incidence in all treatment groups, but not in the control group. However, as a specific rib count undertaken in the 2-generation study did not reveal an increase in this effect, it is concluded that this is not toxicologically significant. Weaning rate and rearing condition were unaffected by treatment and there was no evidence of any abnormality

Alkyl esters of phosphoric acid exhibit a low to moderate acute toxicity and metabolised. From studies done on mice, they are not likely to cause gene damage or affect reproduction. However, 2-ethylhexanoic acid produced an effect on newborn rats at high doses to the pregnant female.

Acute Toxicity	×	Carcinogenicity	✓
Skin Irritation/Corrosion	✓	Reproductivity	✓
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	✓

 Version No: 4.4
 Page 12 of 14
 Issue Date: 08/09/2022

 Print Date: 08/09/2022
 Print Date: 08/09/2022

ENVIRO HP1600 PART A

Respiratory or Skin sensitisation	✓	STOT - Repeated Exposure	✓
Mutagenicity	×	Aspiration Hazard	×

Legend: X – Data either

Data either not available or does not fill the criteria for classification
 Data available to make classification

SECTION 12 Ecological information

Toxicity

ENVIRO HP1600 PART A	Endpoint	Test Duration (hr	·)	Species	Value		Source
	Not Available	Not Available		Not Available	Not Available		Not Available
	Endpoint	Test Duration (hr)	Species		Valu	ie	Source
	EC50	72h	-	other aquatic plants	>164	40mg/l	2
4,4'-diphenylmethane diisocyanate (MDI)	BCF	672h	Fish		61-1	50	7
disocyanate (indi)	NOEC(ECx)	504h	Crustacea		>=1	0mg/l	2
	LC50	96h	Sh Fish		95.2	4-134.37mg/l	Not Available
	Endpoint	Test Duration (hr)	Speci	es		Value	Source
	BCF	1008h	Fish		0.8-2.8	7	
	EC50	72h	Algae or other aquatic plants		82mg/l	Not Available	
tris(2-	ErC50	72h	Algae or other aquatic plants 4mg/l		4mg/l	1	
loroisopropyl)phosphate	EC50	48h	Crustacea 65335mg/l		65335mg/l	1	
	EC50(ECx)	96h	Algae or other aquatic plants 4mg/l		4mg/l	1	
	LC50	96h	Fish	Fish 56.2mg/l		56.2mg/l	Not Available
	EC50	96h	Algae	or other aquatic plants		4mg/l	1

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
4,4'-diphenylmethane diisocyanate (MDI)	LOW (Half-life = 1 days)	LOW (Half-life = 0.24 days)
tris(2-chloroisopropyl)phosphate	HIGH	HIGH

Bioaccumulative potential

Ingredient	Bioaccumulation
4,4'-diphenylmethane diisocyanate (MDI)	LOW (BCF = 15)
tris(2-chloroisopropyl)phosphate	LOW (BCF = 4.6)

Mobility in soil

•	
Ingredient	Mobility
4,4'-diphenylmethane diisocyanate (MDI)	LOW (KOC = 376200)
tris(2-chloroisopropyl)phosphate	LOW (KOC = 1278)

SECTION 13 Disposal considerations

Waste treatment methods

Product / Packaging disposal

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan)

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- ► Reuse
- ► Recycling
- Disposal (if all else fails)

- Bioconcentration Data 8. Vendor Data

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

Version No: **4.4** Page **13** of **14** Issue Date: **08/09/2022**

ENVIRO HP1600 PART A

Print Date: 08/09/2022

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- DO NOT recycle spilled material.
- Consult State Land Waste Management Authority for disposal.
- Neutralise spill material carefully and decontaminate empty containers and spill residues with 10% ammonia solution plus detergent or a proprietary decontaminant prior to disposal.
- DO NOT seal or stopper drums being decontaminated as CO2 gas is generated and may pressurise containers.
- Puncture containers to prevent re-use.
- ▶ Bury or incinerate residues at an approved site.

SECTION 14 Transport information

Labels Required

Marine Pollutant	NO
HAZCHEM	Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
4,4'-diphenylmethane diisocyanate (MDI)	Not Available
tris(2-chloroisopropyl)phosphate	Not Available
Polyurethane prepolymer	Not Available

Transport in bulk in accordance with the ICG Code

Product name	Ship Type
4,4'-diphenylmethane diisocyanate (MDI)	Not Available
tris(2-chloroisopropyl)phosphate	Not Available
Polyurethane prepolymer	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

4,4'-diphenylmethane diisocyanate (MDI) is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Model Work Health and Safety Regulations - Hazardous chemicals (other than lead) requiring health monitoring

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule $\bf 6$

Australian Inventory of Industrial Chemicals (AIIC)

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

tris(2-chloroisopropyl)phosphate is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australian Inventory of Industrial Chemicals (AIIC)

National Inventory Status

······································	
National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	Yes
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	Yes
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	Yes
Vietnam - NCI	Yes
Russia - FBEPH	Yes

Version No: 4.4 Page 14 of 14 Issue Date: 08/09/2022 Print Date: 08/09/2022

ENVIRO HP1600 PART A

National Inventory	Status
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date	08/09/2022
Initial Date	06/12/2017

SDS Version Summary

Version	Date of Update	Sections Updated
3.4	08/09/2022	Acute Health (inhaled), Advice to Doctor, Chronic Health, Classification, Engineering Control, Environmental, Fire Fighter (fire/explosion hazard), First Aid (eye), Ingredients

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

LOD: Limit Of Detection

OTV: Odour Threshold Value

BCF: BioConcentration Factors

BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List

NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory

KECI: Korea Existing Chemicals Inventory

NZIoC: New Zealand Inventory of Chemicals

PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act

TCSI: Taiwan Chemical Substance Inventory

INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances